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ABSTRACT 

Mation produces nearly Harrison-Zel’dovich scalar and tensor perturba- 
tion spectra which lead to anisotropy in the coemic microwave background 

(CMB). The amplitudes and ehapea of .theae spectra can be parametrized 

bY o’,, f = SW?& ns and nT where Q$ and Q+ are the scalar and ten- 
sor contributions fo the equare of the CMB quadrupole and ns and nT are 

the power-law spectral indices. Even if we restrict ourselves to information 
from anglea greater than one third of a degree, three of these observablea 

can he measured with some precision. The combination 1301”‘~Q$ can be 

known to better than f0.3%. The scalar index ns ca,n be determined to 
better than f0.02. The ratio r can be known to about fO.l for ns z 1 and 

slightly better for smaller ns. The precision with which nT can be measured 
depends weakly on nsand strongly on r. For ns N 1 nT can be determined 

-- 
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with a precision of about ~0.056(1.5 + r)/r. A full-sky experiment with a 

20’ beam using technology available today, similar to those being planned 

by several groups, can achieve the above precision. Good angular resolution 
is more important than high signal-tenoise ratio; for a given detector sen- 
sitivity and observing time a smaller beam provides more information than 
a larger beam. The uncertainties in ns and r are roughly proportional to 
the beam size. We briefly discuss the effects of uncertainty in the Hubble 
constant, baryon density, cosmological constant and ionization history. 



1 Introduction 

The detection of anisotropy of the Cosmic Microwave Background (CMB) 
by the COBE DMR [l] marks the beginning of a new era in observational 
cosmology. At least eight other experiments have subsequently made detec- 
tions at angular scales ranging from 0.5” to a few degrees [2]. The many 
possible sources of systematic error combined with the fact that most of the 

results are not much better than 3a detections means that care must be used 
in drawing conclusions from them [3]. H owever, it is encouraging that they 

are roughly consistent with each other and that several experiments have 
reproduced their results with repeated observations of the same area of the 
sky. The results are consistent with a nearly scale-invariant spectrum, pos- 
sibly with a feature at angular scales corresponding to the sound horizon at 
last-scattering (the ‘Doppler peak”) [4,5]. 

The current experiments, if not ruling out any theories with high confi- 
dence, are at the least providing strong constraints. For example, combined 
with large-scale structure data, the COBE DMR twoyear data rule out the 
Primeval Isocurvature Baryon model (61 with 95% confidence or greater j?] 
and imply large bias factors for defect models [8). 

In addition to testing theories, the microwave background also provides 
us with the opportunity to determine the’parameters of a given theory. For 
example, in the cold dark matter (CDM) model the anisotropy depends on 
the amplitudes and slopes of the scalar and tensor spectra, the Hubble con- 
stant, H,, = lOOhkm/sec/Mpc, the baryon density, 52bh2, the cosmological 
constant in units of the critical density, fly, and the redshift of reionization, 

ZR. Bond et al. [9] h ave shown that, unfortunately, different choices of these 
parameters can lead to angular-power spectra which are indistinguishable by 

the current generation of experiments. This degeneracy makes it difficult 
to use CMB anisotropy experiments to determine cosmological parameters 

and hence the authors of (91 refer to the effect as “cosmic confusionn. The 
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degeneracy has a positive effect as well. It limits the space of possible power- 
spectra, rendering the model testable despite its dependence on imprecisely 

known parameters (10, 111. 
The long-term goals of the CMB observational community are much more 

aggressive than those of the current generation of experiments [12]. As a par- 
tial step toward those goals several groups in the United States and Europe 
are currently planning a “next generation” satellite experiment. Using detec- 
tor technology available today, such an experiment could sample the entire 
sky with a half-degree beam and in one year achieve a signal-to-noise ratio 

per beam-size pixel greater than one. Preliminary work by D. Spergel [13] 
indicates that such an experiment is sufficient for a significant lifting of the 
degeneracy of the angular-power spectrum pointed out by Bond et al. - at 
least in some regions of parameter space. 

Here we are interested in what a “next generation” satellite could tell us 
about inflation in particular. Besides resolving several cosmological puzzles, 

inflation is at the heart of the CDM scenario. In this picture, tensor, vector 
and scalar fluctuations in the metric are produced during an early epoch of 
rapid expansion driven by the vacuum energy of a scalar field [14]. The scalar 

perturbations grow via gravitational instability into the variety of structures 
we observe in the Universe today, as well as producing CMB anisotropy 

from about 10’ scales up to the qua&pole. Vector perturbations decay 
with expansion and are of no phenomenological importance. The tensor 
perturbations today correspond to a stochastic background of gravity waves 

and also produce anisotropy in the microwave background at large angular 
scalea (;5 1”). 

Although there is no standard model of inflation, we can expect the spec- 

tra to have certain generic features. For inflation to occur, the dominant 
contribution to the energy density must be the vacuum energy of the scalar 
field. The kinetic energy is small in comparison, and hence the value of 
the scalar field changes slowly. Since the scalar field changes slowly while 
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the Universe is rapidly expanding, the perturbation spectra are nearly scale- 
invariant. Thus the power spectra are well-approximated by power laws with 
spectral indices close to the Harrison- Zel’dovich values. To be more precise, 
the primordial power spectra over the length scales of astrophysical interest 
at some time deep in the radiation-dominated era are well-approximated by 
the following power-laws in comoving wavenumber, k: 

Ps(k) = AsknS, 

PT(k) = ATA-“=-= (1) 

with r&T = ns - 1 = 0. As an example, the spectra from X4’ chaotic inflation 
[15] are best fit by ns = 0.94 and nT = -0.04;’ The fit is better than 0.5% 
in power from the quadrupole to the 10’ scale. 

Since the two perturbation spectra are fit well by power laws, they can 
be characterized by four independent observables. We take them to be Qi, 

r = S;/Q’,, ns and f&T, where Q’, and Q$ are the expectation values of 
the scalar and tensor contributions to the square of the quadrupole. The 
quantities Qi and Qg should not be confused with the actual quadrupole 
moments on the sky. They are related in the same way that events from a 
random process are related to their parent distribution. If the perturbations 
are Gaussian (which is almost certainly the case for inflation), each of the 
five scalar (tensor) quadrupole moments on the sky is a single realization 
drawn from a Gaussian distribution with zero mean and variance Qi(Q+). 

We wish to see how well these four inflationary observables can be deter- 
mined from a satellite experiment. The extent to which the other parameters 
(HO, &h2, . ..) can be determined as well remains an open question. Gonceiv- 
ably, their confusing effects may be detrimental to the precision with which 

the Mationary observables can be determined. We must remember, though, 
that we have other sources of information on the cosmological parameters. 
Observations of light element abundances constrain flbh2 to be within the 

approximate range 0.009 to 0.022 [16] - a range which might well decrease 
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to *lo% in the next few years by the deuterium abundance measurements 

made in quasar absorption line systems [17]. The Hubble Space Telescope 

key project of calibrating Cepheids [18] and several physics-based methods 
[19] promise to make a definitive measurement of the Hubble constant in the 

near future to f5%. Polarization of the CMB can provide constraints on 

ionization history (201. G ravitational lens statistics constrain the value of 

a cosmological constant [21]. Thus in the following, we take specific values 
for the cosmological parameters and assume that they are perfectly known. 
Later we discuss how well they must be known in order that the uncertainty 
be negligible. 

It is worth pointing out that while the cosmological parameters may be 
determined by means other than CMB anisotropy, no observations are better- 

suited to determining the primordial spectra. Redshift surveys will continue 
to be plagued by theoretical uncertainties in the relationship of maSB to light 
(the so-called bias), hampering determination of ns. Millisecond pulsars and 

space-based gravity wave detectors are probably not capable of detecting the 
very weak stochastic background of gravity waves expected from inflation - 
at least not in the near future [22,23]. 

To simulate experiments, we need to assume particular values not only 

of cosmological parameters, but of 92, ns, nT and r as well. Below we focus 
on one case and then discuss how our results might change if the actual 

valuett are different. For the cosmological parameters we choose h = 0.5, 

Q,, = 0, flbh2 = 0.0125 and the standard ionization history. For our theory 
of inflation we take the simplest model there is, chaotic inflation with a 
4’ potential. In addition to ns = 9.94 and nT = -0.04, chaotic inflation 
predictsr= 0.28. This is an example of a general rule for inflationary 
mod& called the consistency relation’ r = -7nT. To choose Qs we note 

‘This relation&p, which L accurate to lowest order in (no - 1) and no, holds generally 
for h~-roU modela; in some modeb (n- 1) 2 nT and the stronger relation, r = -7(n - I), 
alao holdr; 88e Ref. [24]. 
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that for ns = 1 and r = 0, the COBE DMR constrains the expectation value 

of the quadrupole to be Qs = 19.9 f 1.5 pK (251. Although the constraint 
would be slightly different for ns = 0.94 and r = 0.28, our only concern here 
is for rough agreement; we simply take Qs = 20 pK. Chaotic inflation is an 
attractive choice for this study not only for its simplicity but also because r 
is twice as large as it has to be to ensure its detectability [26]. 

In section II we describe our calculation methods. We discuss the calcu- 
lation of the tensor and scalar angular-power spectra, and our modeling of 
experiments. In section III we show the results of attempts to recover Qs, r 

and ns from simulated experiments with varying beam sizes and signal-to 
noise ratios. In section IV we see how well the consistency relation can be 
tested by attempting to recover all four of the observables. In section V we 

consider how our results would change if we had assumed different input val- 
ues of the inflationary observables and cosmological parameters. Particular 
attention is paid to the effect of a cosmological constant on the consistency 

relation. In section VI we briefly examine the effects of uncertainty in cos- 

mological parameters. Here we are interested in learning how well we have 
to know Ho, R,hZ, fly, and reionization redshift, XR, so that our ignorance 
has a negligible effect on the determination of the inflationary observables. 

2 Calculation Met hods 

The spherical harmonics provide a convenient basis for the expansion of 
CMB-temperat ure fluctuations: 

Isotropy in the mean guarantees that (al,a&) = C$&mm~, where brackets 
indicate average over an ensemble of observers. It is the variance of the 
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multipoles that encodes information about the metric perturbations and Cl G 

(a&,) is called the angular-power spectrum. (The expectation for the square 

of the quadrupole anisotropy is Q’ E 5Cs/4x.) Provided that the underlying 

perturbations are Gaussian, all predictions can be derived from the angular- 

power spectrum. 
For example, the expected value of the variance of temperature fluctua- 

tions from a given experiment is given by 

(6T’) = c 
1 

. where the window function WI depends on the beam size and chopping strat- 

egy. For example, an experiment that measures the temperature difference 
between directions separated by angle 8 with beam size ub has a window 
function W = (1 - fi(co~(B))e-~~~. For a map made with a Gaussian beam, 
Wl=e . 4%; 

I 1 Il1111( I 1 I IlIl( I I I1 
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Figure 1: Tensor and scalar angular-power spectra for ns = 1 and nT = 0. 
Both spectra are arbitrarily normalized at Cz = 1. 
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We calculate the angular-power spectra-by numerically evolving the pho- 

ton distribution function from deep in the radiation-dominated era until the 
present moment according to the first order general relativistic Boltzmann 
equation for radiative transfer. Details are given elsewhere [27]. The results 

of one calculation are shown in Fig. 1. 
To model the experiment, we assume that it creates a full-sky pixel&d 

map of the CMB smoothed with a Gaussian beam with full-width at half- 
maximum 4&b. The temperature of the ith pixel, bTi, has a contribution 
from the sky and from the instrument noise; 6Ti = 6*+6?. We further 
assume that the errors are uncorrelated and have uniform variance heir; i.e., 
(6~6~) = U&a,i* For the moment we assume that 6p = 6vMB 

- an assumption we will soon discard. 
There are several different ways of describing the amount of noise in a 

map. The most straightforward way is to specify upi=. Another way is to 
specify the signal-to-noise ratio per pixel, S/N. The observing time per pixel 

is inversely proportional to the pixel size, so both api. and S/N depend on 
the pixel size. For definiteness, whenever referring to S/N or Q., we will 
.take the pixel solid angle to be Q+ = 8f-h x &b. To compare maps with 
different beam sizes, it is useful to have a measure of noise that is independent 
of h. For that purpose we use the weight per solid angle, w s (u&43&-l. 

The error in each pixel, ati, depends on the detector sensitivity s and 
the time spent observing each pixel, te; upi. = s/G. The best detectors 
available today have sensitivities on the order of 200 p K@. With uniform 
full-sky coverage over the course of a year every 20’ x 20’ pixel could be 
observed for 85 seconds. Such a year of observing would result in a map 
with upt = 22 pK for R+ = 20’ x 20’ - or a weight per solid angle of 
w = (7.5 pK)-?degV2. For comparison, the 2-year‘ COBE maps have w N 
(400 pK)-‘deg-‘. The considerable difference between these number is due 

to the N 70-fold improvement of detector sensitivities in the last 20 years. 
The signal used to calculate S/N is the rms of the temperature fluctu- 
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ations. The expected signal is given by EQ. 3. For the model we simulate 

here the expected signal with Ofrb = 20’ is 92.5 PK. Therefore the case of 
u+=22pKhasS/Ns& 

In our simulations, we never create a map. Instead we exploit the fact 

that the estimate of Cl which could be made from such a map, CF’, would 
be xX[+r distributed with mean (CFt) = Cl and variance 

tACl)’ 3 ((CP’ - G)(CF’ - Cl,)) = & (Cl + w-1eps:)2 Jr,, (4) 

(see appendix). 2 In the limit UJ = 00 (upi= = 0), (ACI)~ does not go to 
zero. This is because the finite sampling of events from a random process 
always leads to an uncertainty in the variance, called sampling variance, no 

matter how precisely each event is measured. The sampling variance for a 
Gaussian distribution is equal to twice the square of the variance divided by 
the number of samples. For each 1 there are 2Z+ 1 “samples” drawn from a 
Gaussian distribution of variance Cl, hence the 2/(2Z+ 1) factor in Eq. 4. In 
this limit of full-sky coverage, sampling variance is known as cosmic variance 

PI- 
The signal at large 1 is reduced by the beam but the noise is not. If the 

beam profile is perfectly known, as is assumed here, one can take account of 
this diminution of signal by deconvolving the effect of the beam. The cost of 

doing so is the exponential factor in the noise term. 
Equation 4 can be rewritten in a more illuminating manner: 

AG 2 -= - J( 
Pw-’ po; 

Cl 21-j-l l+me (5) 

This form is useful because ZsCl varies by less than an order of magnitude 
fromf = 2 to I N 1000 for the models we consider. The cosmic variance 

2Equation 4 does not include any error due to f’inite pixel&&ion. At moderate to low 
S/N, these errora arc unimportant if the pixel size ia a few tima smaller than the beam 
sue. 
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term is proportional to l/d and dominates at small 1. The noise term is 
proportional to 1 3/2 at small 2 and for 2 2 l/ub it increases exponentially. 

In Fig. 2 we show ACJCl for four experiments with two different beam- 

sizes and two different values of w. One can see from the figure that, at 
constant to, the experiment with the better angular resolution is more precise 
at every value of 1. The comparison at constant w is meaningful since these 
are experiments with the same detector sensitivity and observing time. 

From Eq. 4 it is easy to show that reducing the beam size at fixed 
detector sensitivity and observing time reduces AC{ for every I, independent 
of Cl, as is evident in Fig. 2. At small values of I, AC, is near the cosmic 
variance limit and thus decreasing the beam decreases AC1 only slightly. 
But for I 2 l/us the reduction in AC, is dramatic. Thus there is much to 
be gained by reducing the size of the beam, even if this means reducing the 
signal-tonoise ratio to below unity. 

To this point we have assumed that 6vMB = iS*. However, syn- 

chrotron and Bremstrahlung radiation, thermal emission from cold dust and 

unresolved extragalactic sources also contribute to the anisotropy of radiation 
at sub-millimeter to centimeter wavelengths at the angular scales of interest 
(291. For this reason, a satellite experiment must make measurements over 

a range of wavelengths, so that the CMB component can be detected by its 
(hopefully) unique spectral dependence. Given upil for a number of differ- 
ent frequencies, and guesses at the slopes and amplitudes of different con- 
taminating sources, one can estimate up= CMB, the standard deviation in the 
determination of 6v MB [30, 311. Preliminary design studies by the MAP 
collaboration indicate that the foregrounds will degrade the noise level by 
a factor of two to three [32]. Therefore, we take into account the effect 
of foreground contamination by simply decreasing w from (7.5 pK)-ldeg-’ 
to (15 pK)-2deg-2 in one case and, to be conservative, (30 pK)“dege2 in 



100 200 300 
1 roa 

so0 600 

Figure 2: The precision of four different experiments. The dashed lines are 
for e riments with 8fWh 

T 
= 40’ and the dot-dashed lines are for 

with fWb = 20’. For each, the lower curve is for w = 
the upper is for w = (30 pK)-2deg’2. 

(15 pK)-%t$%i 

another.3 
Including the effects ti,E foreground contamination makes the comparison 

of experiments with different beam sizes less straightforward. This is because 
the contamination may be more important at one angular scale than another 
and thus cause more degradation in a 40’ experiment than in a 20’ experi- 
ment. However, the smaller beam experiment will still always provide more 

information. As proof, we point out that it is always possible to synthesize a 

larger beam, after having done the experiment with a smaller beam. The in- 
teresting question becomes a quantitative one; how much better is a smaller 

beam? The answer depends on the spatial corrdations of the contaminating 

sources, their frequency dependence and amplitudes and the frequency cov- 

qhe removal of foregroundn will not only increase the noise level but also introduce 
correlationa in the noise from one pixel to the next. We ignore thii effect [33]. 
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erage of the experiment. A complete investigation of this question is outside 

the scope of this paper. Here we only consider a very simple case of randomly 

distributed uniform point sources and an experiment that only measures at 
one frequency. For this case, the fl fluctuations in the number of point 
sources, N, in a given pixel imply u$ oc l/f&i,. Thus for this case the 
comparison between different experiments should be made at equal weight 
per solid angle, just as for the noforeground case. 

We simulate an experiment by drawing C,& from the distribution in Eq. 

4 and then estimate Qs, ns and r from the “data” (the set of moments, 
{ Cy’}) by finding the maximum of the likelihood function Ic(Qs, ns, r). The 
likelihood function is, up to a constant, independent of its arguments, de- 
fined as the probability density of measuring the set of moments C,& given 

~(Qs, ns, r). 

L(Qs, fzs, r) 0~ p(Cp'IG(Qs, ns, r)) 
w = 2 Cl + w’lepOb 

t;(“-2)‘2 ev(-6/2), where 
2nl/21Y( n,/2) 

(6) 

andnlE 2Z+ 1. The product on the right-hand side is simply that of the 
the x$+r distributions with mean Cl and variance given by Eq. 4 (see the 

appendix). 
To measure the certainty with which the observables can be determined 

we examine the distribution of the maxima from many simulations. An 
automated search, which uses the numerical technique of simulated annealing 
(341, finda the maximum for each set of simulated “data”. Evaluation of the 

likelihood function on a fine grid of ns, Qs and r shows that the maximum 
found by the automated procedure differs negligibly from the true maximum. 
Typically we perform 100 simulations which is sufficient to determine the 

standard deviation to better than 10%. 
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3 Results 

* 8 hhml = 20’ 

2 r4 w = (15 pK)-2deg-2 

I I I I I , I I 1  I I I I I , I I I 

.88 .o .02 .04 .06 .08 1 
ns 

Figure 3: The locations of the maxima from 100 simulations are shown pro 
jetted into the Qs - ns plane. The average values of ns and Qs, as well as 
their standard deviations, are indicated by the error bars. 

Figure 3 shows the maxima projected into the Qs - ns plane from 100 sim- 
ulations of an experiment with 6r”b = 20’ and w = (15 pK)-2deg-2. The 

average values of ns and Qs are equal to their input values to within 0.05% 
and hence there is no evidence for bias. The standard deviations in the values 

of ns and Qs are 0.016 and 0.74 pK, respectively. We can conclude then 
that an experiment of this type can determine ns with Ans = 0.016 f 0.001 

and Qs with AQs = (0.74 f 0.052) pK. 

The strong correlation between Qs and ns, evident in Fig. 2, can be 
easily understood. It is due to the lever arm between I = 2 and those 

values of 1, Z’, for which Cl is measured most precisely. If Cl* were the only 

moment measured then (Qs, ns) = (20 pK, 0.94) would fit the data as well 
as (20 pK(I'/2)(0-M-n")/2, ns) since each set of parameters results in nearly 
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Figure 4: The maxima of the likelihood functions for 100 simulations pro- 
jected into the Qz(ras) - ns plane (see text). 

the same value of Cl*. Keeping Qs a (2’/2)-“~/~ as ns varies, causes the 

spectrum to “pivot” about 1’ and thus we call I’ the pivot point of the data. 

The combination Q:(ns) I oQ~(Z*/2)“s/’ is uncorrelated with ns. We 
choose the proportionality constant to be a = (Z*/2)-“*M~2 so that the mean 

value of QS equals the mean value of Qs. For the experiment under consid- 
eration, the pivot point is at I* = 210. Figure 4 shows the same maxima as 
in Fig. 3, but in the new coordinates ns,Q:(ns). There is very little bias 
in the estimate of Q’s; the average value of Qz is 20.001 PK. We find that 

AQs(ns) = (0.0027 f 0.0002) PK. 

For fixed CT, low QS and high ns means that the fit has too little power 
at small 1. To make up this deficit, r is overestimated. Thus there is also a 
correlation between r and ns (and hence Qs), a correlation which is evident 
in Fig. 5. We find Ar = 0.11 f 0.008. There is very little bias; the average 
value of r is 0.29. 
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.9 .95 1 
ns 

Figure 5: The maxima of the likelihood functions for 100 different simulations 
projected into the r - ns plane. 

* ______m-w-v e-m--- --*------.-------------. AQ;/Q; 
3 

.ooA ’ I I I 1 1 I 
20 30 40 

8 hh (arc minutes) 

Figure 6: The standard deviations of three of the four inflationary observables 
expected from experiments with three different beam sizes and two different 
weights per solid angle, w. Pentagons indicate Ar, squares Ans and triangles 
AQz/Q& The solid lines connect experiments with u, = (15 pK)-ldegW2. 
Along the dashed lines, tu = (30 pK)‘ldega2. 
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We have analyzed the results from simulated experiments with a range 

of beam sizes and S/N ratios. The results are shown in Fig. 6 and Table 1. 

Each experiment has been simulated 100 times and thus the error bars are 

about the same size as the plotting symbols. 

F efwam wa k (AQYYQ.')' (AQ?dQ$)” (Aw)b - (Ans)C (Ar)” - (Ar)’ r 
2w 15 260 0.0025 0.0027 0.012 0.016 0.10 0.11 
2w 30 210 0.0039 0.0041 0.016 0.029 0.14 0.18 
w 15 233 0.0028 0.0028 0.013 0.022 0.12 0.14 
3(Y 30 191 0.0043 0.0047 0.017 0.044 0.19 0.23 
40/ 15 207 0.0032 0.0035 0.015 0.034 0.16 0.19 
4(r 30 . 168 0.0050 0.0050 0.019 0.058 0.22 0.42 Ir 

Table 1: The precision with which the three independent inflationary observ- 
ables can be measured. 

Units are (pK)-ldeg-?. 

In order to understand our results analytically, it helps to take a greatly 
simplified view of the spectra. The approximate forms 

l(l+ l)C,” = 6Cf(f/2)ns-'; 

I(1 + l)CT = St-Cf(Z/2)6(60 - I) (7) 

capture the essence of the dependence of the exact spectra on Qs, ns, r 

and nT for 2 5 2 ;5 1060 and are sufficient for our purposes here. The 

detailed structure of peaks and troughs actually has little effect on how well 
the inflationary observables can be determined. 

The level of precision achieved by the simulated experiments can roughly 
be understood by considering measurements of the amplitude of the above 
spectra at three different angular scales centered around moments we shall 
call Ic, IB and 2~. The measurement at the smallest of the three angular 
scales is centered around Ic and determines the amplitude of the scalar spec- 
trum. The multipole moment 2~ is defined to be that for which ACl/C, is 

15 
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a minimum. The measurement at the in&mediate angular scale, centered 
around Ze, combined with the measurement at 2~ determines the slope. With 
the scalar spectrum thus completely determined, the value of r can be in- 
ferred from the amount of “excess power” in the large-angle measurement 

centered at 1~. 
For simplicity, let us take the two smaller-scale window functions, Wrc 

and WIB to be top hats with full widths lc and le. The amplitude of the 

scalar spectrum can be known as well as we can know (6T:). 

The l/a factor is due to the reduction in variance caused by summing 1~ 
moments Cl-lc/2 to C,+lcls. Equation 8 accurately reproduces the numerical 
results for AQ:/Qz as can be seen in the Table. 

Measurement at a larger scale allows us to extract the slope. From Eq. 7 

and therefore 

(ag) N (6T;) ; 
0 

ns-I 

The analytic values of Ans in the Table are derived using Eq. 8 to find 
A(* 
3-f and then Eq. 10 with ZB chose to minimize Ans. The analytic values 
con&ently underestimate Ans. 

The experiment centered at 2~ can now be used to determine r. Knox 

and Turner [26] showed that a specific window function, WrA, centered at 
IA N 33 is ideally suited for detecting the excess power due to gravity waves. 
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They used it to define an observable proportional to r: 

Mi> 
zA = (ST:)- - l9 (11) 

where (~T:)J, = XI ,r mC,SWIA is the anisotropy expected in experiment 
A from the scalar spectrum, which is fully determined by experiments B and 
C. If the proportionality constant QA is such that r = a~2~ then 

w2 = a:(AZA)’ 

+ ((aA + r) Ansln(lc/lA))2. (12) 

Let us concentrate first on the case Ans = 0, the one considered in [26]. The 
last expression follows from the approximation of W;’ as a top hat centered 
at 1~ with width 1~. Taking aA = 3 (since C,‘,/C,“, N r/3, from Fig. 1) we 
find Ar = 0.055 (for r < aA). Knox and Turner found rMlN = 0.14, where 

rMrN is de&red to be that value of r for which 95% of the time, r = 0 can 

be ruled out with 95% confidence or greater. In order to compare results we 
‘must convert Ar to rMIN. Since the tail of a Gaussian containing 5 per cent 
of the area is a distance 1.k from the maximum, rM[N = 3.2 x Ar. Thus 

we find rll(lN = 0.17, which compares fairly well with the exact result. 
The last expression for the second term in Eq. 12 follows from the fact 

that the uncertainty in the scalar contribution to 2~ is entirely due to Ans 
and the lever arm between 1~ N 55 and 1~. The “analytic” results for Ar in 
the Table were calculated by substituting the numerical values of Ans into 

Eq. 12. 

4 Consistency Relation 

As mentioned above, inflation predicts a relationship between the tensor 
amplitude to scalar amplitude ratio and the shape of the tensor spectrum. 
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This relationship can be simply expressed in terms of the observables. To 
lowest order in the deviation from scale-invariance it is r = -7nT. If we 
could measure both r and tZT with precision, this relationship would provide 
a powerful test of inflation [24]. Unfortunately, the only effect of the gravity 
waves that we can hope to detect in the near future is the increased anisotropy 
of the microwave background at large angular scales. This limited range of 
length scales over which the tensor spectrum has an observable influence 
makes the measurement of nT very difficult. 

For large r the tensor spectrum stands out more relative to the scalar 
spectrum, thereby decreasing AnT. For this reason, and because we are 

pessimistic about the prospects for determining nT well, we study the case 

r = 1, nT = -9.14. For the same reason, decreasing ns aho decreases AnT, 

but not as dramatically. However, the combination of large r and ns < 1 is 
strongly disfavored because it leaves insufficient power for structure formation 
on galactic scales. Therefore we choose to study ns = 1. 

In Fig. 7 the values of r*(nT) and AT are shown which maximize the 
likelihood functions of 200 simulated experiments with 6f-b = 20’, w = 
(15 pK)‘2deg’2. The combination r’(nT) = r(l*/2)“*+‘**’ is analogous to 

Qg(ns). in the scalar case. We find the pivot point to be at 1’ = 20 and 
LbaT = 0.14. 

’ 

The uncertainty in ?aT can be understood by imagining amplitude mea- 
surements at a pair of angular scales, exactly as was done for the scalar case. 
hvriting Ek& 10 for nT 

(AnT)’ = (~J$A/~D))-~ ( (%)2 + (2)‘) , (13) 

where ZD is defined analogously to 2~. Equation 13 is correct only if we 

neglect the contributions to AZA and AZ0 that are due to uncertainty in 
ns, since these contributions to the error in nT nearly cancel ah other. The 

value of 1~ that minim&s AnT is about f,&. since 1~ N, 55, 1~ N 18. At 
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Figure 7: The maxima of the likelihood function of 200 simulations projected 
into the r*(nT)-nT plane (see text). The “data” were synthesized for ns = 1, 
Qs = 20 pK, r = 1 and nT = -l/7. Unlike the previous cases nT is not 
constrained to obey the consistency equation r = -7nT. 

this minimum, 

brn Fig. 1 we see that C,‘,/C,“, ‘v r/1.5. Therefore oD ‘v 1.5 and fhT = 

0.14 for r = 1, in agreement with the numerical result. 
Whether this precision allows for a test of inflation depends on the al- 

ternative hypotheses. For example, the hypothesis r = 1, nT = 1 is clearly 

distinguishable from the hypothesis r = 1, nT = -l/7. However r&T = -r/7 

andnT=Oarenotnecessari ly distinguishable for r 5 1. We see that signif- 

icant deviations from the Harrison-Zel’dovich value, ?‘LT = 0, are necessary 

for the consistency relation to be falsified. 
Higher order corrections to the consistency relation are unlikely to be an 

important consideration in its testing. To second order in ns - 1 and nT, the 
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consistency relation is [35] 

nT = -f (1 + O.llr + O.lS(ns - 1)). (15) 

Even for r = 2, the correction to the expected value of nT is only about 0.03. 

5 Dependence on Cosmological Parameters 

At fixed signal-to-noise ratio, the sensitivity of the above experiments to 
Qs and nS is nearly independent of the actual values of h, 06, 0~ and ns. 
However, fi, and nS do effect the sensitivities to r and TIT through their effect 
on the shape of the scalar spectrum for 1 s 60. For example, decreasing ns 

at fixed r increases CF/C,” at 1 > 2 and hence improves sensitivity to r and 
nT- The sensitivity to nT also depends on r as shown in the previous section. 

The cosmological constant is the only cosmological parameter that signif- 
icantly affects the shape and amplitude of the scalar spectrum for 1 s 60. As 
the Universe expands and becomes cosmological constant dominated, the ex- 
pansion rate increases. The increased expansion rate causes the gravitational 
potential to decay which induces anisotropy through the Integrated Sachs- 
Wolfe (ISW) effect [36], (371.’ The effect is largest for wavelengths that most 
recently entered the horizon and hence is largest at the quadrupole. For 
gravitational waves, the anisotropy in the radiation is all imprinted at the 

last-scattering surface (231 and h ence a cosmological constant has little effect. 
The relationship between r and nT is due to a relationship between the 

primordial tensor and scalar spectra [24]. Therefore the dependence of Qs 

on n, implies that the relationship between r and nT also depends on 
a~. Defining 12~ correction factors for the scalar and tensor quadrupoles, 

‘This has been called the late ISW effect by the authora of ref. (371 to distinguish it 
from the early ISW effect which occurred near the la&-scattering surface M the Universe 
WM in transition from radiation-domination to matter-domination. 
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f&d = 6&(%)/Q&h = 0))’ and f~(S1,i) G (QT(Q,)/QT(n, = o)j2 al- 
lows us to write the consistency relation for R* # 0: 

fT(%) 
’ = -7fs(nAl”T. (16) 

The correction factors as well as their ratio are shown in Fig. 8. They were 
calculated numerically using the Boltzmann codes described in references 
1271, extended to allow for a cosmological constant. The dependence of fT/fs 

on h and t&h2 is much weaker. 

2 2 

1 1 

0 0 
0 0 .2 .2 .4 .4 .6 .6 .6 .6 1 1 

% % 

Figure 8: Correction factors for the magnitude of the scalar and tensor 
quadrupoles, fs(&) and fT(fl~), as well as their ratio. 

6 Cosmic Confusion 

In addition to assuming particular values of the cosmological parameters, we 
also assumed z;eTo uncertainty in their values. Here we briefly investigate 
how small these uncertainties must be so that they have a negligible effect 
on the precision with which we can determine the inflationary observables. 
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First we consider the confusing effect of uncertainty in Rbh2. Decreasing 
f&h2 decreases the peak at 2 N 200 (the “Doppler peak”) and leaves the 
trough at I N 300 relatively unaffected. Thus a change in i&h’ can be 

compensated for by an increase in Qs, to fit the Doppler peak, and a decrease 
in ns to fit the trough simultaneously. These shifts in Qs and ns create excess 
power at small 1 which is compensated for by an increase in r. 

To study these shifts in the inferred values of the inflationary observablea 
we analyzed one set of simulated data several times, each time with a different 
assumption about the value of 06. For 6rrb = 20’, tu = (15 pK)-ldeg-l we 

find the uncertainties in ns and r due to uncertainties in Rbh2 to be 

(AII&,~s cz 0.25 *rG2), 
b 

(Ar)Q,hs N 1.3 A(%h2) 

Rbh2 l 

(17) 

(18) 
Thus &h2 must be known to better than 10% to be negligible for the mea- 
surement of r and better than 6% to be negligible for the determination of 

w. 
To estimate the confusing effect of parameters other than &h2, we can 

use an empirical equation from Bond et al. [9] 

6 w ns-0.28log(l+0.8r)-0.515 ((1 - &) h2)1’2-0.00036z~2+0.26 (19) 

where ZR is the redshift of reionization (effectively 0 for the standard ion- 
ization history). They claim that (for f2bh2 = 0.0125) the angular-power 
spectrum is degenerate along surfaces of constant 5, i.e. variations of pa- 
rameters at fixed ii do not affect the shape of the angular-power spectrum 

significantly. To the extent that this is true, Eq. 19 implies 

(Lhs)h = o.s2,/xAh = 0.23Ah, (20) 

(An&, = $$A& = 0.47AR,, and 
- A (21) 
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@4J? = 0.13(rR/50)3~2AtRfrR (22) 

where the left-most equalities hold for h = 0.8, VIA = 0.8. Therefore to get 

to Ans = 0.016 we must know the Hubble constant to better than 6% (14% 

for fI* = 0.8) and we must know 0~ to better than N 7% (2% for .R* = 0.8, 

h = 0.8). 

A discussion of the prospects for precision measurements of the above 
parameters by means other than CMB anisotropy is beyond the scope of 
this paper. Clearly, given present uncertainties in cosmological parameters, 
the uncertainty in ns from any of the satellite experiments considered above . 
would be “confusion-dominated”. 

7 Dismission 

Our results should be compared to those of Hinshaw et al. [38]. They simu- 
lated full-sky maps of the CMB and then analyzed small patches by finding 
the maximumof the likelihood function for f&, with all other parameters held 
fixed. They found, for S/N > 1, that sky coverage is more important than 
S/N and angular resolution. Angular resolution is their next most impor- 
tant factor; they found that Aslb decreases by a factor of 1.3 as the beam 

size decreases from lo to 30’. Since they kept all other parameters fixed, the 

determination of Rb is effectively an amplitude determination and we can 

compare to our result for AQz/Q& f or which, similarly, halving the beam 
size causes a factor of 1.3 decrease. 

This slight decrease should not, however, be used as an argument against 
the value of high resolution, the rewards of which are greater for the other 

observablea. We find Ans and Ar are both proportional to &b. Further- 
more, it should be emphasized, that even if it means reducing S/N to below 
unity, reducing the beam size (at fixed w) still results in dramatic improve 
ment of our knowledge of the angular-power spectrum and the observables 
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studied here. 
Other considerations also argue for a small beam size. The extent to 

which the degeneracy pointed out by Bond el al. can be lifted probably 
depends critically on the beam size. Also, if 0 + 0~ < 1, the deviation of 
geodesics in an open Universe pushes the Doppler peak and all other features 
intrinsic to the last-scattering surface to smaller angles [39]. A lower limit 
on optimal beam size will probably come from constraints on the size of the 
telescope. 

We have seen that a full-sky map of the CMB at 20’ resolution with 

S/N = 2 could achieve Ans N 0.016, Ar N 0.11 and AQ:/Qz N 0.003. 
Such precision would allow for a critical test of inflation as the source of 
primordial perturbations. One particularly exciting prospect is the indirect 
detection of gravitational waves by determination of a non-zero r. While 

there is no generic inflationary prediction for the value of r, we note again 
that the simplest model gives r = 0.28 - a number significantly different from 
zero. Also, many models obey the relation r = -7(ns - 1) and a slight tilt 

( ns - 1 zz 0.05) is helpful in fitting the large-scale structure data. Therefore 
r z 0.35 may be likely. Of course, there are also simple models that have 

negligibly small values of r. 

. 

The effects of uncertainty in cosmological parameters (cosmic confusion) 
tempers our enthusiasm for the above precision. However, uncertainties in h 

and f&h2 are likely to decrease dramatically over the next few years. Also, 
precision measurement of multipole moments with I ;L 300 could possibly 
lift the degeneracy. Preliminary work by D. Spergel(131 suggests that this is 
indeed the case for a full-sky map with 6fwb = 0.5” and w = (10 pK)-2deg-2. 
It would be interesting to see how the level of degeneracy changes as the beam 
size and weight per solid angle are varied. 
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Appendix: Calculation of AC&l 
Let Xi be a Gaussian random variable with zero mean and variance u2. Then 
the sum n 

v s c xi’/u2 
i 

(23) 

is a random variable that has a xz distribution. That is, it has probability 

density [40] 

P(V)dv = 
V(n-2)/2e’V/2 

2”i2r( n/2) 
dV. (24) 

To relate this result to the case of interest we make the identifications 

n = 2l+land 

xi = akm (i=O-+m=-1, i=n-bm=l) (25) 

where 
MAP= 

aim - C bTjXrn(6j9 bj)- (26) 
j=l 

There are two contributions to a r”,^‘: the signal convolved with the beam, 

ah e 43 of/2 , and the noise, up. These two contributions are uncorrelated. 
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The first, by definition of Cl, has variance C$-“‘:. The second has covariance 

(agk(agY)*) = 4r$%!&immt 
pix 

(27) 

which follows from applying the rules of error propagation to the definition 
of a,tM and the assumption that the errors in the temperature of each pixel 
are uncorrelated with variance ugix. Thus we make the further identification 

2 

u2 = Cle 4%’ *+4*!k 
N- (28) 

PX 

since that is the total variance of azAP. 

To estimate Cl from CIMAp z C, 1 uvp12/(2Z + 1) we must subtract off 
the expected noise contribution and correct for the finite width of the beam. 
Therefore 

Since the weight-per-solid angle is IU z (o$,Q,,)-* = 

Cp” = ( 
Cy” - w-l) epqie 

From this it follows that 

v _ t21 + 1) Cp’ + w-‘epu2 
Cl + w’1epu2 

(29) 
4ro’. -I 

( > += PI% 

(30) 

(31) 
and therefore 

P(Cpt)dCla = P(V)- dV dCp” 
dCp’ 

n V(n-W2e-V/2 

= Cl + W-leW 2n/21?(n/2) 
dCr”’ (32) 

where n = - 22 + 1. With the probability density for dp’ in hand, it is easy to 

show that (CpL) = Cl and 

((CF’ - G)(CF - Cl,)) = & (Cl + w-lepu:)’ 6lp. (33) 
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